Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves
نویسندگان
چکیده
منابع مشابه
Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves
We describe theorems and computational methods for verifying the Birch and Swinnerton-Dyer conjectural formula for specific elliptic curves over Q of analytic ranks 0 and 1. We apply our techniques to show that if E is a non-CM elliptic curve over Q of conductor ≤ 1000 and rank 0 or 1, then the Birch and Swinnerton-Dyer conjectural formula for the leading coefficient of the L-series is true for...
متن کاملRank of Elliptic Curves and the Birch Swinnerton-dyer Conjecture
We numerically verify the Conjecture of Birch and SwinnertonDyer concerning the analytic and geometric rank of an elliptic curve. An algorithm (based on the work of Cremona) is developed in the PARI/GP language for computing the order of vanishing of the L-function for any (non-singular) curve. The analytic rank outputs for several families of curves are compared with readily available data on ...
متن کاملThe Birch-swinnerton-dyer Conjecture
We give a brief description of the Birch-Swinnerton-Dyer conjecture which is one of the seven Clay problems.
متن کاملThe Birch and Swinnerton-Dyer conjecture for Q-curves
Let N ≡ 1(mod 4) be a positive integer and let be the single even primitive quadratic Dirichlet character on (Z/NZ)×. Let f ∈ S2(Γ0(N), ) be a newform with nebentypus . By the Shimura construction, f corresponds to an abelian variety Af defined over Q whose dimension is [Kf : Q] where Kf is the number field associated with f . When dimAf = 2, the Fricke involution wN acts on Af and is defined o...
متن کاملThe conjecture of Birch and Swinnerton-Dyer
This essay starts by first explaining, for elliptic curves defined over Q, the statement of the conjecture of Birch and Swinnerton-Dyer. Alongside, it contains a discussion of some results that have been proved in the direction of the conjecture, such as the theorem of Kolyvagin-Gross-Zagier and the weak parity theorem of Tim and Vladimir Dokchitser. The second, third and fourth part of the ess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2009
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-09-02253-4